Bivariate Vieta-Fibonacci and Bivariate Vieta-Lucas Polynomials

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Bivariate Complex Fibonacci and Lucas Polynomials

In this study we define and study the Bivariate Complex Fibonacci and Bivariate Complex Lucas Polynomials. We give generating function, Binet formula, explicit formula and partial derivation of these polynomials. By defining these bivariate polynomials for special cases Fn(x, 1) is the complex Fibonacci polynomials and Fn(1, 1) is the complex Fibonacci numbers. Finally in the last section we gi...

متن کامل

On some properties on bivariate Fibonacci and Lucas polynomials

In this paper we generalize to bivariate polynomials of Fibonacci and Lucas, properties obtained for Chebyshev polynomials. We prove that the coordinates of the bivariate polynomials over appropriate basis are families of integers satisfying remarkable recurrence relations.

متن کامل

Some Formulae for Bivariate Fibonacci and Lucas Polynomials

We derive a collection of identities for bivariate Fibonacci and Lu-cas polynomials using essentially a matrix approach as well as properties of such polynomials when the variables x and y are replaced by polynomials. A wealth of combinatorial identities can be obtained for selected values of the variables.

متن کامل

On Some Properties of Bivariate Fibonacci and Lucas Polynomials

In this paper we generalize to bivariate Fibonacci and Lucas polynomials, properties obtained for Chebyshev polynomials. We prove that the coordinates of the bivariate polynomials over appropriate bases are families of integers satisfying remarkable recurrence relations.

متن کامل

Generalized Bivariate Fibonacci Polynomials

We define generalized bivariate polynomials, from which specifying initial conditions the bivariate Fibonacci and Lucas polynomials are obtained. Using essentially a matrix approach we derive identities and inequalities that in most cases generalize known results. 1 Antefacts The generalized bivariate Fibonacci polynomial may be defined as Hn(x, y) = xHn−1(x, y) + yHn−2(x, y), H0(x, y) = a0, H1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IOSR Journal of Mathematics

سال: 2016

ISSN: 2319-765X,2278-5728

DOI: 10.9790/5728-1204024450